Question			Answers	Marks	Guidance
Q 1	(a)	(i)	C	B1	
		(ii)	Zero	B1	
	(b)	(i)	proton / ${ }_{1}^{1} \mathrm{H} /{ }_{1}^{1} \mathrm{p} / \mathrm{p}$	B1	
		(ii)	$\begin{aligned} & \lambda=\frac{0.693}{5700 \times 3.16 \times 10^{7}} \text { or } \lambda=3.847 \ldots \times 10^{-12}\left(\mathrm{~s}^{-1}\right) \\ & (A=\lambda N) ; N=\frac{1.1 \times 10^{19}}{3.847 \ldots \times 10^{-12}} \text { or } N=2.859 \ldots \times 10^{30} \\ & \text { mass }=\frac{2.859 \ldots \times 10^{30}}{6.02 \times 10^{23}} \times 0.014 \\ & \text { mass }=6.649 \ldots \times 10^{4}(\mathrm{~kg}) \text { or } 6.6 \times 10^{4}(\mathrm{~kg}) \end{aligned}$	C1 C1 A1	Allow any subject Allow ecf within the calculation for an incorrect λ. Allow $6.7 \times 10^{4}(\mathrm{~kg})$
	(c)		A (thermal / slow-moving) neutron splits the nucleus into two (smaller) nuclei and (fast-moving) neutron(s).	B1 B1	Allow 'fast neutron'; allow 'decays' instead of 'splits'. Not 'splitting the atom'. Not 'particles' or 'fragments' in place of '(smaller) nuclei'
	(d)		Any three from: 1. Fission reactions produce fast neutrons. 2. The moderator / water slows down (the fast-moving) neutrons. 3. Slow-moving neutrons have a greater chance of causing fission (of U-235). (ora) 4. The control rods absorb (some of the) neutrons. 5. (On average) one neutron survives between successive (fission) reactions. QWC: The neutrons make collisions with the (moderator) nuclei and transfer (some of) their (kinetic) energy.	$\mathrm{B} 1 \times 3$ B1	Allow boron / cadmium instead of control rods in 4. Not graphite for 4. Allow atoms / molecules instead of nuclei.
			Total	12	

Question		Answer	Marks	Guidance	
2	(a)	(i)	Any number in the range: 10^{4} to 10^{5}	C1	
		(ii)1	$10^{-14}=\frac{h}{m v}$ momentum $=\frac{6.63 \times 10^{-34}}{10^{-14}}$ momentum $=6.6 \times 10^{-20}\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right)$	A1	Allow 1 sf answer of $7 \times 10^{-20}\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s} \mathrm{~s}^{-1}\right)$

Question			Answer	Marks	Guidance
3	(a)		Impossible to predict when a nucleus will decay or impossible to predict which nucleus will decay	B1	
	(b)		$\begin{aligned} & N=N_{0} \mathrm{e}^{-\lambda t} \\ & (\lambda=) 0.693 / 7.1 \times 10^{8} \\ & \lambda=9.76 \times 10^{-10} \mathrm{y}^{-1} \\ & 0.011=e^{-\left(9.76 \times 10^{-10} \times t\right)} \\ & (\text { age }=) \frac{\ln (0.011)}{-9.76 \times 10^{-10}} \\ & \text { age }=4.6 \times 10^{9}(\mathrm{y}) \end{aligned}$	C1 C1 A1	Alternatives: $\begin{aligned} & N=N_{0} e^{-\lambda t} \\ & \left(\lambda=0.693 /\left[7.1 \times 10^{8} \times 3.16 \times 10^{7}\right] \quad \mathrm{C} 1\right. \\ & \lambda=3.089 \times 10^{-17} \mathrm{~s}^{-1} \\ & 0.011=e^{-\left(3.089 \times 10^{-17} \times t\right)} \\ & \\ & (\text { age }=) \frac{\ln (0.011)}{-3.089 \times 10^{-17}} \\ & \text { age }=1.46 \ldots \times 10^{17}(\mathrm{~s}) \\ & \text { age }=4.6 \times 10^{9}(\mathrm{y}) \end{aligned}$ Or $0.011=\frac{1}{2^{n}}$ $n=-\frac{\ln (0.011)}{\ln 2} \quad \text { or } \quad n=6.5$ $\text { age }=6.5 \times 7.1 \times 10^{8}(y)$ $\text { age }=4.6 \times 10^{9}(y)$
	(c)	(i)	number in the range 50 to 70	B1	
		(ii)	Correct reference to binding energy. Eg: The BE per nucleon will decrease for fusion (which is impossible unless external energy is supplied) (AW)	B1	

Question	Answer	Marks	Guidance
(iii)	$\begin{aligned} & (\text { mass of nucleons }=) 4 \times 1.673 \times 10^{-27}+4 \times 1.675 \times 10^{-27} \\ & (\Delta m=)\left[4 \times 1.673 \times 10^{-27}+4 \times 1.675 \times 10^{-27}\right]-1.329 \times 10^{-26} \\ & (\text { mass defect }=) 1.020 \times 10^{-28}(\mathrm{~kg}) \\ & B E=\text { mass defect } \times c^{2} \\ & (B E=) 1.020 \times 10^{-28} \times\left(3.0 \times 10^{8}\right)^{2}\left(=9.180 \times 10^{-12} \mathrm{~J}\right) \\ & (B E \text { per nucleon })=9.180 \times 10^{-12} / 8 \\ & B E \text { per nucleon }=1.148 \times 10^{-12}(\mathrm{~J}) \end{aligned}$	C1 C1 C1 A1	Allow, due to misinterpretation of Data, Formulae and Relationship Booklet, the following (though incorrect): $\begin{array}{ll} \text { (nucleon mass =) } 8 \times 1.661 \times 10^{-27}(\mathrm{~kg}) & \mathrm{C} 1 \\ (\Delta m=)\left[8 \times 1.661 \times 10^{-27}\right]-1.329 \times 10^{-26}(\mathrm{~kg}) & \mathrm{C} 1 \\ (B E=)(-) 2.0 \times 10^{-30} \times\left(3.0 \times 10^{8}\right)^{2}\left(=1.8 \times 10^{-13} \mathrm{~J}\right) & \mathrm{C} 1 \\ (B E \text { per nucleon }=) 1.8 \times 10^{-13} / 8 & \\ \text { BE per nucleon }=2.25 \times 10^{-14}(\mathrm{~J}) & \\ \end{array}$ Allow 2 sf or 3 sf answer
	Total	10	

Question		Answer	Marks	Guidance
4	(a)	Any two from: 1. There is a repulsive (electrical) force (between the gold nucleus and the alpha particle) 2. Momentum is conserved (because there are no external forces) / initial momentum of alpha particle $=$ final momentum of gold nucleus (because there are no external forces) 3. KE of alpha particle transformed into (electrical) PE	B1×2	Allow: (The gold nucleus and alpha particle experience) forces in opposite directions
	(b)	Correct directions of field shown on lines from \mathbf{A} and \mathbf{B} Correct curved field lines from \mathbf{A} and \mathbf{B}	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	
	(c)	$\begin{aligned} & F=\frac{Q q}{4 \pi \varepsilon_{0} r^{2}} \\ & Q=79 e \text { and } q=2 e \\ & \text { force }=\frac{79 \times 2 \times\left(1.60 \times 10^{-19}\right)^{2}}{4 \pi \times 8.85 \times 10^{-12} \times\left(6.0 \times 10^{-14}\right)^{2}} \\ & \text { force }=10.1(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 0 \end{aligned}$	All values must be substituted for this mark
	(d)	Correctly shaped curve with F decreasing as r increases Value of F is between 2 to $3(\mathrm{~N})$ at $r=12 \times 10^{-14} \mathrm{~m}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Note: $F \propto 1 / r^{2}$, hence F should be about $2.5(\mathrm{~N})$
		Total	9	

Question			Answer	Marks	Guidance
5	(a)		no: of neutrons = 142	B1	
	(b)	(i)	$\begin{aligned} & (5.6 \mathrm{MeV}=) 5.6 \times \frac{10^{6}}{} \times 1.6 \times 10^{-19} \\ & \text { energy }=8.96 \times 10^{-13}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A0 } \end{aligned}$	Allow: $5.6 \times \underline{1.6 \times 10^{-13}}$
		(ii)	$\begin{aligned} & \frac{1}{2} \times 6.65 \times 10^{-27} \times v^{2}=8.96 \times 10^{-13} \\ & v=\sqrt{\frac{2 \times 8.96 \times 10^{-13}}{6.65 \times 10^{-27}}} \\ & \text { speed }=1.6 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 A1	Answer to 3 sf is $1.64 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Note: The answer is $1.65 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ if $9 \times 10^{-13}(\mathrm{~J})$ is used
	(c)	(i)	$\begin{aligned} & \text { activity }=\frac{62}{8.96 \times 10^{-13}} \\ & \text { activity }=6.92 \times 10^{13}(\mathrm{~Bq}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 0 \end{aligned}$	Allow: activity $=\frac{62}{9 \times 10^{-13}}\left(=6.89 \times 10^{13} \mathrm{~Bq}\right)$ Possible ecf from (b)(i)
		(ii)	$\begin{aligned} & \lambda=\frac{0.693}{T} \\ & \lambda=\frac{0.693}{88 \times 3.16 \times 10^{7}} \\ & \text { decay constant }=2.49 \times 10^{-10}\left(\mathrm{~s}^{-1}\right) \text { or } 2.5 \times 10^{-10}\left(\mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note: $\ln 2=0.693$ Allow: 1 mark for using 88 years and getting an answer of 7.9×10^{-3}
		(iii)	$\begin{aligned} & 1 \mathrm{~A}=\lambda N \\ & N=\frac{6.92 \times 10^{13}}{2.49 \times 10^{-10}} \\ & \text { number }=2.78 \times 10^{23} \text { or } 2.8 \times 10^{23} \\ & \mathbf{2} \text { mass }=\frac{2.78 \times 10^{23}}{6.02 \times 10^{23}} \times 0.24 \\ & \text { mass }=0.11(\mathrm{~kg}) \end{aligned}$	C1 A1 B1	Possible ecf from (c)(ii) Note: ${ }^{~} 7 \times 10^{13} / 2.5 \times 10^{-10}=2.8 \times 10^{23}$, Possible ecf for mass from incorrect value for number of nuclei
				10	

