Question		1	Answers	Marks	Guidance
1	(a)	(i)	C	B1	
		(ii)	Zero	B1	
	(b)	(i)	proton / ¹ ₁ H / ¹ ₁ p / p	B1	
		(ii)	$\lambda = \frac{0.693}{5700 \times 3.16 \times 10^7}$ or $\lambda = 3.847 \times 10^{-12} (s^{-1})$	C1	
			$(A = \lambda N); N = \frac{1.1 \times 10^{19}}{3.847 \times 10^{-12}}$ or $N = 2.859 \times 10^{30}$	C1	Allow any subject Allow ecf within the calculation for an incorrect λ .
			mass = $\frac{2.859 \times 10^{30}}{6.02 \times 10^{23}} \times 0.014$		
			mass = 6.649×10^4 (kg) or 6.6×10^4 (kg)	A1	Allow 6.7×10^4 (kg)
	(c)		A (thermal / slow-moving) neutron splits the <u>nucleus i</u> nto two (smaller) nuclei	B1	Allow 'fast neutron'; allow 'decays' instead of 'splits'. Not 'splitting the atom'. Not 'particles' or 'fragments' in place of '(smaller) nuclei'.
			and (fast-moving) neutron(s).	B1	
	(d)		 Any three from: 1. Fission reactions produce fast neutrons. 2. The moderator / water slows down (the fast-moving) neutrons. 3. Slow-moving neutrons have a greater chance of causing fission (of U-235). (ora) 	B1×3	
			 The control rods absorb (some of the) neutrons. (On average) one neutron survives between successive (fission) reactions. 		Allow boron / cadmium instead of control rods in 4. Not graphite for 4.
			QWC: The neutrons make collisions with the (moderator) nuclei <u>and</u> transfer (some of) their (kinetic) energy.	B1	Allow atoms / molecules instead of nuclei.
			Total	12	

Question		ion	Answer	Marks	Guidance
2 (a) (i)		(i)	Any number in the range: 10^4 to 10^5	B1	
		(ii)1	$10^{-14} = \frac{h}{mv}$	C1	
			momentum = $\frac{6.63 \times 10^{-34}}{10^{-14}}$		
			momentum = 6.6×10^{-20} (kg m s ⁻¹)	A1	Allow 1 sf answer of 7×10^{-20} (kg m s ⁻¹)
		(ii)2	The mass of the electron is greater (than its rest mass / 9.11×10^{-31} kg)	B1	Allow : Dividing (momentum) by 9.11×10^{-31} (kg) would give a speed of 7.3×10^{10} (m s ⁻¹) which is greater than the speed of light / <i>c</i> (this is not possible) (AW)
	(b)	(i)	Different number of <u>neutrons</u>	B1	Not : different number of nucleons / different mass number / different A
		(ii)	uud	B1	
		(iii)	$u \rightarrow d$ + posi ino	M1 A1	Allow: u u d \rightarrow u d d Allow: symbols for positron (e ⁺ / β^+ / $_{+1}^0$ e) and neutrino υ) Allow full marks for an answer in words Allow 1 mark for $p \rightarrow p + e^+ + \psi$
					Allow Thatk for $p \rightarrow ff + e^{-} + 0$
		(1V)	charge or proton number / momentum / mass-energy / nucleon number / lepton number / strangeness / baryon number / spin	B1	Not : <u>mass</u> on its own or <u>energy</u> on its own, but allow mass <u>and</u> energy
		(v)	β^+ when there are fewer neutrons / β^+ for lighter nuclei or β^- when there are more neutrons / β^- for heavier nuclei	B1	Allow: Alternative correct answers in terms of ratio of protons to neutrons
			Total	10	

C	Question		Answer	Marks	Guidance
3	(a)		Impossible to predict when a <u>nucleus</u> will decay or impossible to predict which <u>nucleus</u> will decay	B1	
	(b)		$N = N_0 e^{-\lambda t}$ ($\lambda = $) 0.693/7.1 ×10 ⁸ $\lambda = 9.76 \times 10^{-10} \text{ y}^{-1}$ 0.011 = $e^{-(9.76 \times 10^{-10} \times t)}$ (age =) $\frac{\ln(0.011)}{-9.76 \times 10^{-10}}$ age = 4.6 × 10 ⁹ (y)	C1 C1 A1	Alternatives: $N = N_0 e^{-\lambda t}$ $(\lambda =) 0.693/[7.1 \times 10^8 \times 3.16 \times 10^7] C1$ $\lambda = 3.089 \times 10^{-17} s^{-1}$ $0.011 = e^{-(3.089 \times 10^{-17} s_t)}$ C1 $(age =) \frac{\ln(0.011)}{-3.089 \times 10^{-17}}$ $age = 1.46 \times 10^{17} (s)$ $age = 4.6 \times 10^9 (y)$ A1 Or $0.011 = \frac{1}{2^n}$ C1 $n = -\frac{\ln(0.011)}{\ln 2}$ or $n = 6.5$ $age = 6.5 \times 7.1 \times 10^8 (y)$ $age = 4.6 \times 10^9 (y)$ A1
	(c)	(i)	number in the range 50 to 70	B1	
		(ii)	Correct reference to binding energy. Eg: The BE per nucleon will decrease for fusion (which is impossible unless external energy is supplied) (AW)	B1	

Question	Answer	Marks	Guidance	
(iii)	(mass of nucleons =) $4 \times 1.673 \times 10^{-27} + 4 \times 1.675 \times 10^{-27}$	C1	Allow, due to misinterpretation of Data, Formulae an	nd
			Relationship Booklet, the following (though incorrect):
	$(\Delta m =) [4 \times 1.673 \times 10^{-27} + 4 \times 1.675 \times 10^{-27}] - 1.329 \times 10^{-26}$	C1		.
			$(nucleon mass =) 8 \times 1.661 \times 10^{-27} (kg)$	C1
	(mass defect =) 1.020×10^{-28} (kg)		$(\Delta m =) [8 \times 1.661 \times 10^{-27}] - 1.329 \times 10^{-20}$ (kg)	C1
			$(BE =) (-) 2.0 \times 10^{-30} \times (3.0 \times 10^{8})^2 (= 1.8 \times 10^{-13} \text{ J})$	C1
	BE = mass defect $\times c^2$		(BE per nucleon =) $1.8 \times 10^{-13}/8$	
	00 00 40	C1	BE per nucleon = 2.25×10^{-14} (J)	A1
	$(BE =) \ 1.020 \times 10^{-28} \times (3.0 \times 10^8)^2 \ (= 9.180 \times 10^{-12} \ J)$			
	(BE per nucleon) = $9.180 \times 10^{12}/8$			
	PE per pueleon -1.149 \times 10 ⁻¹² (1)	A1	Allow 2 sf or 3 sf answer	
	$DE per flucteon = 1.146 \times 10 (3)$			
	Total	10		

4 (a) Any two from: 1. There is a repulsive (electrical) force (between the gold nucleus and the alpha particle) B1×2 Allow: (The gold nucleus and alpha particle experienc forces in opposite directions 2. Momentum is conserved (because there are no exter- nal forces) / initial momentum of alpha particle = final momentum of gold nucleus (because there are no ex- ternal forces) B1×2 Allow: (The gold nucleus and alpha particle experienc forces in opposite directions (b) Correct directions of field shown on lines from A and B B1 (c) $F = \frac{Qq}{4\pi\varepsilon_0 r^2}$ Q = 79e and q = 2e force = $\frac{79 \times 2 \times (1.60 \times 10^{-19})^2}{4\pi \times 8.85 \times 10^{-12} \times (6.0 \times 10^{-14})^2}$ force = 10.1 (N) C1 C1 All values must be substituted for this mark A0 (d) Correctly shaped curve with F decreasing as r increases Value of F is between 2 to 3 (N) at $r = 12 \times 10^{-14}$ m M1	Question		Answer	Marks	Guidance
(b)Correct directions of field shown on lines from A and B Correct curved field lines from A and BB1(c) $F = \frac{Qq}{4\pi\varepsilon_0 r^2}$ Q = 79e and q = 2e force = $\frac{79 \times 2 \times (1.60 \times 10^{-19})^2}{4\pi \times 8.85 \times 10^{-12} \times (6.0 \times 10^{-14})^2}$ C1 C1 C1 All values must be substituted for this mark A0(d)Correctly shaped curve with F decreasing as r increases Value of F is between 2 to 3 (N) at r = 12 \times 10^{-14} mM1 A1	4	(a)	 Any two from: 1. There is a repulsive (electrical) force (between the gold nucleus and the alpha particle) 2. Momentum is conserved (because there are no external forces) / initial momentum of alpha particle = final momentum of gold nucleus (because there are no external forces) 3. KE of alpha particle transformed into (electrical) PE 	B1×2	Allow: (The gold nucleus and alpha particle experience) forces in opposite directions
(c) $F = \frac{Qq}{4\pi\varepsilon_0 r^2}$ C1 $Q = 79e$ and $q = 2e$ C1 $Q = 79e$ and $q = 2e$ C1force $= \frac{79 \times 2 \times (1.60 \times 10^{-19})^2}{4\pi \times 8.85 \times 10^{-12} \times (6.0 \times 10^{-14})^2}$ force $= 10.1$ (N)(d)Correctly shaped curve with F decreasing as r increasesM1Value of F is between 2 to 3 (N) at $r = 12 \times 10^{-14}$ mA1Note: $F \propto 1/r^2$, hence F should be about 2.5 (N)		(b)	Correct directions of field shown on lines from A and B Correct curved field lines from A and B	B1 B1	
(d)Correctly shaped curve with F decreasing as r increasesM1Value of F is between 2 to 3 (N) at $r = 12 \times 10^{-14}$ mA1Note: $F \propto 1/r^2$, hence F should be about 2.5 (N)		(c)	$F = \frac{Qq}{4\pi\varepsilon_0 r^2}$ Q = 79e and q = 2e force = $\frac{79 \times 2 \times (1.60 \times 10^{-19})^2}{4\pi \times 8.85 \times 10^{-12} \times (6.0 \times 10^{-14})^2}$ force = 10.1 (N)	C1 C1 C1 A0	All values must be substituted for this mark
		(d)	Correctly shaped curve with <i>F</i> decreasing as <i>r</i> increases Value of <i>F</i> is between 2 to 3 (N) at $r = 12 \times 10^{-14}$ m	M1 A1	Note : $F \propto 1/r^2$, hence F should be about 2.5 (N)

Q	Question		Answer	Marks	Guidance
5	(a)		no: of neutrons = 142	B1	
	(b)	(i)	$(5.6 \text{ MeV} =) 5.6 \times \frac{10^6}{10^{-13}} \times \frac{1.6 \times 10^{-19}}{1.6 \times 10^{-19}}$ energy = 8.96 × 10 ⁻¹³ (J)	M1 A0	Allow : $5.6 \times 1.6 \times 10^{-13}$
		(ii)	$\frac{1}{2} \times 6.65 \times 10^{-27} \times v^{2} = 8.96 \times 10^{-13}$ $v = \sqrt{\frac{2 \times 8.96 \times 10^{-13}}{6.65 \times 10^{-27}}}$ speed = 1.6 × 10 ⁷ (m s ⁻¹)	C1 A1	Answer to 3 sf is 1.64×10^7 (m s ⁻¹) Note : The answer is 1.65×10^7 (m s ⁻¹) if 9×10^{-13} (J) is used
	(c)	(i)	activity = $\frac{62}{8.96 \times 10^{-13}}$ activity = 6.92 × 10 ¹³ (Bq)	C1 A0	Allow: activity = $\frac{62}{9 \times 10^{-13}}$ (= 6.89 × 10 ¹³ Bq) Possible ecf from (b)(i)
		(ii)	$\lambda = \frac{0.693}{T}$ $\lambda = \frac{0.693}{88 \times 3.16 \times 10^{7}}$ decay constant = 2.49 × 10 ⁻¹⁰ (s ⁻¹) or 2.5 × 10 ⁻¹⁰ (s ⁻¹)	C1 A1	Note : $ln2 = 0.693$ Allow : 1 mark for using 88 years and getting an answer of 7.9×10^{-3}
		(iii)	1 $A = \lambda N$ $N = \frac{6.92 \times 10^{13}}{2.49 \times 10^{-10}}$ number =2.78 × 10 ²³ or 2.8 × 10 ²³ 2 mass = $\frac{2.78 \times 10^{23}}{6.02 \times 10^{23}} \times 0.24$ mass = 0.11 (kg)	C1 A1 B1	Possible ecf from (c)(ii) Note: $7 \times 10^{13}/2.5 \times 10^{-10} = 2.8 \times 10^{23}$ Possible ecf for mass from incorrect value for number of nuclei
			Total	10	